Magnetoresistive waves in plasmas
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The self-generated magnetic field of a current diffusing into a plasma between conductors can
magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed.

Applications to plasma opening switches are discussed.

PACS numbers: 52.75.Kq, 52.40. — w, 52.35.Mw, 52.35. — g

Penetration of a current and its associated magnetic
field into a plasma is diffusive.’ If the current through the
plasma is sufficiently high, the magnetic field generated by
the current can magnetically trap electrons and even ions.
When this happens, the plasma resistivity increases, and the
plasma is said to be magnetically insulated. Magnetic insula-
tion is an often observed and essential feature of such appli-
cations as high-current diodes and spark-gap plasmas. This
letter analyzes the propagation of magnetoresistive, or mag-
netic insulating waves into plasmas including self-field ef-
fects. Previous work on magnetic insulation primarily ad-
dressed equilibria® rather than waves. An obvious
application of a magnetoresistive wave is a plasma opening
switch, which is addressed by this analysis.

For the application of a plasma opening switch, we are
interested in magnetic fields intense enough to magnetize the
plasma and dominate plasma inertia effects. Assuming con-
stant plasma density in the region of intense magnetic field is
reasonable until the pressure of the plasma swept ahead of
the field becomes comparable to the magnetic pressure.

Besides neglecting plasma dynamics, we also neglect
nonuniform plasma heating. Consequently, the temperature
dependence of the plasma conductivity is not manifested.
Relativistic effects and displacement currents are taken to be
negligible. Instabilities, such as Rayleigh-Taylor and tear-
ing, are not considered here.

The model is one dimensional with spatial variation as-
sumed in the direction of field penetration only. In the mod-
el, a uniform plasma fills the half-space x>0 between con-
ducting planes at y =0 and y =d as shown in Fig. 1{a).
Plasma current flows in the y direction, driven externally by
an electric field £p between the conductors. The current gen-
erates a magnetic field BZ. The quasi-one-dimensional ap-
proximation® depends upon the following conditions being
satisfied: The channel length (x direction) is much greater
than the height and width; the channel cross-sectional area
does not vary quickly; transverse pressure differences are
small; the magnetic Reynold’s number is much less than 1.
In this approximation, Maxwell’s equations become
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where Jj is the current density.

The plasma is described by nonrelativistic collisional
transport theory. If the Hall field® is shorted out by the con-
ducting surfaces, then Ohm’s law for the collisional, quasi-
neutral, weakly ionized plasma may be written

J=0E, (3)

where the conductivity of the electrons and ions in the mag-
netic field is given by*¢
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Here n and e are the electron (and ion) density and charge.
The mass, collision time, and gyrofrequency of electrons are
m,7,,andw, = eB /mc,andofionsare M, r,,andw,; = eB/
Mc. Because collision times are typically ordered as 7, /7,
~(m/M)""?, electron conductivity dominates as long as
w,. 7, (M /m)"?. Ion conductivity dominates in more in-
tense fields. Because the Hall field is shorted out, the conduc-
tivity decreases with increasing magnetic field. This effect
provides the magnetoresistance of the plasma.

If the conducting electrodes are segmented and driven
by separate power supplies, then the Hall field will not be
shorted out, and the electron conductivity will be indepen-
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FIG. 1.(a) Geometry of quasi-one-dimensional field penetration model. (b)
Equivalent circuit for plasma opening switch.
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dent of magnetic field.** Where ion conductivity dominates
at high field strengths, however, the conductivity is field de-
pendent, and a magnetoresistive wave is driven in qualita-
tively the same manner. Only the case of a shorted Hall field

is treated here.
If a magnetoresistive wave traverses the whole plasma

in a channel, then the current can be quenched across the
plasma and shunted to a load in parallel. In this manner, the
plasma serves as an opening switch, as illustrated schemati-
cally in Fig. 1{b).

Combining Eqgs. (1)-(3) gives the nonlinear diffusion
equation describing propagation of a magnetic wave into a
plasma as
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where B =w,, 7,, 7==t /7,, and the coordinate { =x/A is x
normalized to the plasma skin depth A =(mc?/4mne?)'/?. We
have made use of the ordering e=m7r, /Mr, €1 to simplify
the conductivity.

The boundary conditions are found by integrating Eq.
(1). At £ = oo, we require 8= 0. At { =0, we find B =,
where,=4welr, /mc*andI (r)is the current per unit width
in the plasma. We solve Eq. (6) for two cases of interest:
constant current causing a magnetoresistive wave to diffuse
inward and increasing current causing a magnetoresistive
wave to propagate inward at constant velocity.

If the current is constant, then Eq. (6) may be written in
terms of a new diffusion coordinate £ =¢ /7'/% as
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Some properties of this equation may be deduced by inspec-
tion. Because each extremum in 3 is also a saddle point, 3
must decrease monotonically with £. Therefore, the peak of
the magnetic field is always at the plasma boundary. How-
ever, because d 3 /d&* <0 at the boundary, the peak in
— df /d£ appears inside the plasma away from the bound-
ary. Therefore, the current density J = — (ned /7,)(r, /1)/?
X df3 /d& peaks inside the plasma at one or more surfaces
that diffuse inward with time. The penetration of a current
maximum into the plasma is caused by the diffusion of the
magnetoresistive wave behind it. This diffusion may be com-
pared with nonlinear magnetic diffusion in metals® and with
propagation of thermal waves from a heat source.’

In the limit B,«1, the conductivity is nearly indepen-
dent of the magnetic field, and the field diffuses inward ap-
proximately as S=/f3,[1 — erf(£ /2)]. In this weak field limit,
thecurrentdensityJ = (483, ned /7, )(r./mt)"/* exp( — £2/4)
has a maximum at the plasma boundary. The numerical so-
lution of Eq. (7) for the more general case of a field-depen-
dent conductivity is shown in Fig. 2. The spike in current
density at the foot of the magnetic wave is caused by elec-
trons crossing in the region where they have not yet become
trapped. A secondary peak in current density, which is
caused by ions crossing, sometimes occurs at higher magnet-
ic field strengths just beyond the region of ion trapping.
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FIG. 2. Profiles of normalized magnetic field 8 (dashed curves) and norma-
lized current density — df3/d& (solid curves) in the normalized diffusion
coordinate for several indicated values of magnetic field at the plasma
boundary and for € = 0.006.

If the plasma current increases, then a magnetoresistive
wave can propagate into the plasma at constant velocity
rather than diffusing in. In that case, Eq. (6) written in terms
of a constant dimensionless wave velocity V and a new coor-
dinate 7= — V7 may be integrated immediately to give

a3 __—V(+eB’B

- 2 202y ° (8

dnp  (1+B7)1+4€B7)
and integrated again to give
1[1C+$%
N=o—|—In{——
2V 1L e 1+¢B°
2
+1n(_b§) +e (B2 —BZ)]. )

Here, B, = 4mel (0)r, /mc’ is the value of fat 7 = 0, and the
velocity of the magnetoresistive wave isv = AV /7,. The so-
lutions, Egs. {8} and (9), are shown in Fig. 3.

Again, it is easily seen from Eq. (8) that B decreases
monotonically with 7. Differentiating Eq. (8) shows that
— df3 /dm haslocal maximum values of ¥ /2 where 8~ 1 and
where B = 1/¢. Therefore, the current density has local maxi-
mum values of J_, =nev/2 at these magnetic field
strengths. The maximum at S~ 1 is caused by the electrons
crossing where they have not yet become trapped; the maxi-
mum at S=1/€ is caused by the ions crossing where they
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FIG. 3. Profiles of normalized magnetic field (dashed curves) and norma-
lized current density {solid curves) in the normalized traveling-wave coordi-
nate for several indicated values of magnetic field at the plasma boundary
and for € = 0.006.
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have not yet become trapped. Of course, the maximum in
current density caused by ions will not be observed unless
Bo> 1/€. Nor will the electrons cause a maximum of current
density to occur within the plasma unless 5, > 1. These ob-
servations are all apparent in Fig. 3. In the asymptotic limit
of large fields, in which €8 (x = 0)> 1 and the conductivity
near the boundary is dominated by ions, the current must
increase with time as

I~(nevd) (2t Jer,)'/? (10)

in order to maintain the propagating wave.
The velocity of the propagating wave depends on the
electrical power used to drive it. From Eq. (2), we find

E=(@/c)B. (11)
At the plasma surface, therefore, the potential across the
conductors is

&0 = (v/c)4wl /c)d . (12)

Current as a function of time is found by evaluating Eq. (9) at
the plasma boundary. In the asymptotic limit of large fields,
Eq. (10) gives the constant velocity of the magnetoresistive
wave as

v~(2mer,/nmc)2 [I(2)/t'?] . (13)

In the same asymptotic limit, the linear power density in the
plasma is

4md (2mer,\'2 I3t
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As an example, suppose that the linear current density
is increasing as I = (1 MA/cm)(t /1 us)'/?in a 1-eV alumi-
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num plasma at 10'° cm . Then a magnetoresistive wave
will penetrate the plasma at a constant speed of about 20 cm/
4s at linear current densities above about 1 MA/cm. The
resistance of the plasma does not increase rapidly until the
magnetoresistive wave reaches the end of the plasma. If the
plasma is used as an opening switch, the switching time
scales as the scale length of the front of the magnetoresistive
wave divided by the velocity of the wave.

In conclusion, we have analyzed propagation of magne-
toresistive waves into plasmas in which Hall fields are short-
ed out, including self-field effects and ion as well as electron
conductivity. Two analytic solutions were presented in the
quasi-one-dimensional approximation. One describes a con-
stant current diffusing into a plasma. The other describes an
increasing current propagating into a plasma at constant ve-
locity. Magnetoresistive waves may be capable of quickly
opening high-current circuits at high voltage.
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