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Weakly interacting internal solitary waves in 
neighbouring pycnoclines 
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(Received 9 March 1981 and in revised form 29 January 1982) 

Weak coupling between nonlinear internal solitary waves on neighbouring pycnoclines 
allows resonant energy exchange. The lagging wave increases its energy and speed at 
the expense of the front-running wave, so that the waves leapfrog about an average 
position. Analytical estimates for this process agree with the wave-tank experiments 
described in the companion paper by Weidman & Johnson (1982). 

1. Introduction 

The region between two fluids of different density (the pycnocline) can support a 
variety of interesting waves. These so-called internal waves are dispersive, and can 
be nonlinear even for modest amplitudes. Nonlinear solitary waves have been 
investigated by Keulegan (1953) and Long (1956), by Benney (1966) and Benjamin 
(1966) for shallow water, and by Benjamin (1967) and Ono (1975) for deep water. 
For intermediate depths these waves have been investigated by Kubota, KO & Dobbs 
(1978) and Joseph (1977). The solitary waves are generally very stable, and are 
easily generated from quite arbitrary but large perturbations. 

In the ocean there are often at least two pycnoclines fairly close together. Eckart 
(1 961) discussed the linear internal-wave problem for two well-separated pycnoclines, 
and showed the resonant transfer of energy between waves in each of the two pycno- 
clines. The energy transfer is also possible between solitary waves, each on its own 
pycnocline. This situation, shown in figure 1, was treated by Liu, Kubota & KO (1 980). 
They derived two coupled equations for the evolution of the wave amplitudes of 
single-mode waves propagating along each pycnocline with nearly equal speeds, and 
investigated the interaction numerically. After initial transients there appear clearly 
time-periodic solitary waves, which alternate their relative phase relationship as a 
result of the oscillation of wave amplitudes: the solitary waves are leapfrogging over 
each other as they propagate. 

The coupling between the upper and lower solitary waves is through the induced 
pressure fields; therefore the interaction is decreasing with increasing separation 
distance between the pycnoclines. For large separation distance, the coupling between 
waves is weak. Then the shape of the solitary waves, which is a reflection of the 
balance between nonlinearity and dispersion, does not change, but the wave parameters 
change slowly in time in accordance with the energy conservation law (e.g. Pereira & 
Redekopp 1980). 
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The emphasis of this paper is on the perturbation theory applied to a physical 
problem that was motivated by numerical calculations. The companion paper by 
Weidman & Johnson (1982) shows the predicted leapfrogging solitary waves experi- 
mentally, with reasonable quantitative agreement except for the additional influence 
of viscous damping. 

2. Analysis 
Three homogeneous fluid layers of thickness H,, H, and H3 are separated by two 

thin layers of thickness 2h1 and 2h, with gradually changing densities as shown sche- 
matically in figure 1. The analysis of Liu et al. (1980) leads to two coupled equations 
for the evolution of the wave amplitudes A(& T) and B(C, T) of single-mode, weakly 
nonlinear, long internal waves, each in one pycnocline: 

( 1 4  

( 1 b )  

a2 a2 

86, 
AT+alAAE-/3,K2%(A) - B  - &(B) = 0, 

82  a2 
B, - ACBS + a, BBS - P2 s3 ( B )  - x z ( A  1 = 0, 

where the operator X, is 

The operator X3 for the bottom pycnocline depth equals Xl with H, replaced by H,. 
Wave B is coupled to wave A through the operator 

The interaction is proportional to the wave amplitude in the other pycnocline, and 
decreases with increasing interpycnocline distance H2. 
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The time T and space variable 5 are in a reference frame moving with the upper 
linear wave speed C,. a and /3 are environmental parameters that mewure the strength 
of nonlinearity and dispersion in each pycnocline separately; AC is the difference 
between the upper and lower linear wave speeds. 

For a mode-two solitary internal wave in a finite-depth fluid with a single pycnocline 
located in the middle of the tank, H, = H2 = H, the steady-state wave-amplitude 
solution is (Joseph 1977) 

where the parameter of non-dimensional width 81 determines the maximum amplitude 

Joseph’s solution is the natural connection between the Benjamin-Ono deep-water 
(8, --f n) and Korteweg-de Vries shallow-water (8, + 0) solutions (Henyey 1980). 
Equation (4) is rigorously true only when a single pycnocline is halfway between the 
top and bottom of the wave tank; however, when the supporting pycnocline is not 
exactly halfway, or in the presence of a second distant pycnocline, the stationary 
wave shape is well approximated by (4)  if IHl-H21/(H,+H2) Q 1 (Liu et al. 1980). 
Hence, in the rest of this analysis we use Joseph’s solution. 

In  the absence of coupling between pycnoclines, the energy of individual waves is 
conserved. With coupling included, the energy changes according to 

Similarly, the energy of wave B satisfies 

However, even though the energy of the individual waves is not conserved in general, 
the total energy of the combined system is conserved. 

For large separation distances between two pycnoclines, there is a small non- 
dimensional parameter for the interaction, A = ( A / H ) 2 ,  where h is the characteristic 
wavelength. In this case, the problem possesses three distinct timescales: the time- 
scale for wave motion, h/Co; for wave evolution, A2/hC,; and for wave-amplitude 
oscillation, H2/hC,. When A < 1, the coupling term is small compared with the non- 
linear and dispersive terms, and so the coupling is weak. 

For weak coupling it is usually a good approximation to assume that the shape of 
the solitary wave - a reflection of the balance between nonlinearity and dispersion - 
does not change, but that the soliton parameters change in accordance with the energy 
loss. The result is an ordinary differential equation for the parameter 81 of the first 
wave, coupled to a similar equation for the parameter 8 2  of the second wave. These 
equations involve the horizontal separation O(t )  between the upper wave and the 
lower wave, defined implicitly in the expression for the wave amplitude of the lower 
wave : 

B(5) = 2B, [ cos 8 2  + cosh (-)I-’. (7) 

The lower solitary wave is found ahead of the upper solitary wave for 0 > 0. 
7-2 
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The wave energy of wave A in terms of 8, is 

By using Parseval’s theorem and the Fourier transform, the coupling term becomes 

with 
Kzsinh K sin (K8/H)  dK 

”’ e, = s -,sinh (nK/S,) sinh (nK/S,)’ 

The final set of equations for the wave paramteers 8, and 8, is then 

_ -  a” - -- 2np1az F(S2) I(Sl, S,, 8). 
at  a, H2 

The function P(S) is the inverse of the derivative of the wave energy (8) with respect 
to the parameter 8: 

(%)-’ = F(6)  = 
sin2 S 

(SsinS)a+ (sinS-Sco~S)~’ 

which is always positive, because the wave energy increases with S. 

whose time derivative is the difference between the individual wave speeds 
Equations (10a, b) are supplemented by an equation for the wave separation 8, 

(12) 

It is clear from ( 9 b )  that the interaction vanishes when the horizontal separation 8 
between waves is zero. Such waves constitute a stationary state when their speeds 
are equal. On the other hand, for large separation 8, the integrand in (9b) is oscillatory, 
and I(&, S,, 8) approaches zero. Therefore widely separated waves do not interact, 
and propagate with no change in shape. 

Although much simpler than the original partial differential equations, the ordinary 
differential equations (lea, b) and (12) for S,, 8, and 8 are still too complicated for 
analytical study to gain some physical insight, but small oscillations can be treated 
analytically. 

The equilibrium state has one wave in each pycnocline with equal speeds and no 
horizontal separation. The wave parameters a t  equilibrium, a,, and a,,, are related by 
the equal-speed condition 

(13) 

Small oscillations about the equilibrium are obtained by putting Sl(t) = S,, + A,(t) 
and S2(t)  = S,, + A,(t), where the As are assumed to be small. The relation between the 
oscillation amplitudes A, and A,, from (lOa, b), is 

2 d8 
dt H 
_ -  - AC - - [pl(Sl cot 6, - 1) - Bz(S2 cot S, - 1 )]. 

/31(S10~~tSl,- 1) = /92(S20~~tS20- l)+$HAC. 
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Small oscillations around the equilibrium state also imply that the relative position 
B of the waves remains small compared with a characteristic length. In  this case the 
interaction term becomes linear in 0: 

K3 sinh K dK 
(nK/S,,)sinh (nK/S,,)' 

This is justified because the integral is cut off at K 2: max (a,,, a,,). With these approxi- 
mations, the three ordinary differential equations (lOa, b) and (12) coalesce into the 
simple-harmonic-oscillation equation 

(16) 

where the frequency w(S,,, a,,) is a complicated function involving (16). 
In order to interpret the frequency physically, (16) is still too complicated; the 

final restriction is that the wave widths at equilibrium, S,, and Szo, are comparable. 
This assumption allows the evaluation of the integrand at an appropriately defined 
intermediate value So between S,, and Szo. A natural value for So is 

(17) 

d'AJdt2 = - ~2(S10,820)  AI, 

8, = ~(4, + 820). 

With this intermediate So the expression for the frequency w = ~(8,) is 

VlPZ w2 = - (a: + at) F(6,) G(S,) J(S,). 
a1 a, H4 

Here, F is given by ( 1 l), and C;r is defined by 

J(S,) is the derivative of the wave speed with respect to the width So: 

J(6,) = (So - 4 sin 2S,)/sin2 So. (20) 

The dependence of the frequency on So is contained in the complicated function FGJ, 
which is plotted in figure 2. In  general, the large separation distance has a weak 
influenceon the soliton shape (through the width S), which, in turn, hm aweakinfluence 
on the function P(6) G(S) J(6) .  Therefore, in order to simplify the results further for 
application purposes, we take the limit So + n (Benjamin-Ono soliton) while keeping 
H large but fixed and neglecting the linear wave-speed difference AC. In  this limit 
the product FJ approaches n-l, and G approaches anJ. Thus the frequency of small 
oscillations for a Benjamin-Ono soliton reduces to 

This result is expressed in the physical parameters; the linear wave speed C,, 
pycnocline thicknesses h, and h,, and separation distance H. It is to be noted that the 
period of oscillation 2n/w is indeed much larger than the period of wave motion and 
also larger than the timescale for the evolution of the solitary wave, as indicated 
before. Equations (18) and (21) are used for comparison with the wave-tank experi- 
ments described in the companion paper by Weidman & Johnson (1982). 
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FIGURE 2. The frequency coefficient FGJ as a function of soliton parameter a0. 

3. Results and discussion 
The analytical expression for the frequency of small oscillations in (18) involves 

many approximations, but they are not essential. These approximations are made 
only because the coefficients that occur in the ordinary differential equations (lOa, b )  
are too complicated for analytical evaluation. Therefore, it is interesting to compare 
the numerical results of (10a, b )  and (12) with the analytical estimates from (18). 

In order to make comparisons with the results of Liu et al. (1980), we take their 
pycnocline parameters a and ~3 as a = 6C0/5h and p = #hC, for the hyperbolic- 
tangent density profile. There the linear wave speed is C, = 3.87 and h is the pycno- 
cline thickness; .5 = 1 for the upper and h = 1.4 for the lower pycnocline. The numerical 
values for these parameters are typical of a laboratory experiment in which the units 
of length are centimetres and the units of time are seconds. Before assessing the 
influence of the parameters on the oscillation period, we compute one particular case 
from (lOa, b )  and (12) with H = 10, a,, = 1-84, a,, = 1.62 and the maximum separation 
8, = 8, as shown in figure 3. It is clear that this result (the dashed line) is very similar 
to the result of Liu et a,?. (1980) (the solid line) apart from a difference in the initial 
time to accommodate the initial transients. It is to be noted that the amplitudes A ,  
and B, and the separation 8 are perfectly periodic, albeit not exactly sinusoidal, and 
both results agree quantitatively with less than 15 yo difference of the oscillation 
periods. 

For small Om, the numerically computed period Te from (lOa, b)  and (12), and the 
theoretical period Tth from (18) agree well, as shown in figure 4(a )  for 8, = 8. It is 
to be noted that the period T of wave-amplitude oscillation increases as H 2  for large H .  
Figure 4 ( b )  shows the period as a function of the maximum separation 8,. The theoreti- 
cal value q h  is close to the limit 8 --f 0, and the period T increases roughly exponentially 
for large 8. From figure 4 (b ) ,  there appears to be a maximum relative position of waves 
beyond which there is no oscillatory behaviour. In general, the results from the small- 
oscillation approximation compare reasonably well with the numerical results obtained 
from (lOa, b )  and (12). 
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FIGURE 3. Comparison of the amplitude and phase of two leapfrogging solitons computed 
numerically from (lOa, b)  and (12) (the dashed line) with the results of Liu et al. (1980) (the 
solid line); H = 10, So, = 1.92, So, = 1.70, 0, = 8, AC = 0. 
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FIGURE 4. Comparison between theoretical period Tth defined by (18), and the numerical value 
Te computed from (lOa, b)  and (12). (a) Oscillation period as function of pycnocline separation 
distance H;  0, = 8, AC = 0. (b) Numerical oscillation period Te &B function of maximum 
soliton distance 0,; H = 10, So, = 1.84, So, = 1432, AC = 0. 

4. Concluding remarks 
This study considers solitary waves on two distinct but neighbouring pycnoclines 

with thicknesses much smaller than a characteristic wavelength. Each solitary wave 
maintains the relation between amplitude, width and velocity, but slowly changes 
these parameters to comply with the effect of energy exchange. Three ordinary 
differential equations describe the widths and the horizontal separation of the solitary 
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waves. Asimple formula is obtained for the oscillation frequency about the equilibrium. 
The results agree quantitatively with previous numerical computations by Liu et al. 
(1980), except for the initial transients, and with the subsequent experiment by 
Weidman & Johnson (1982), except for viscous damping. 

This work was partially supported by APL/JHU Subcontract no. 600575 to Dyna- 
mics Technology Inc. One of the authors (N. R. P.) acknowledges the hospitality of the 
Aerospace Engineering Department a t  the University of Southern California, where 
part of his work was performed. Our discussions with P. Weidman have contributed 
substantially to this paper. 
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