Radiation damping of long, finite-amplitude internal waves
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Numerical solutions of a damped, nonlinear wave equation are presented. The equation describes the
propagation of waves in a narrow thermocline or inversion which lose energy by exciting internal waves in the
weakly stratified ambient environment. The results provide estimates for the persistence of finite-amplitude

internal waves propagating in a thermoclinic waveguide.

We discuss the decay characteristics of localized
solutions to the nonlinear evolution equation
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This equation was recently derived by Maslowe and
Reclekopp1 in the context of finite amplitude, long in-
ternal waves propagating in a thermoclinic waveguide
with vertical scale %, when the ambient fluid surround-
ing the thermocline is weakly stratified. They show
that the wave amplitude a must satisfy the criterion

a//h = O(NN/NO)) (2)

where N, and N, denote typical Brunt—Viisald frequen-
cies in the main thermocline and the ambient environ-
ment, respectively. Otherwise, long waves cannot be
trapped within the thermocline waveguide, but they
disperse throughout the entire fluid column, and Eq.
(1) does not apply. It is important to point out that

Eq. (2) is a finite amplitude result; the ducting of lin-
ear internal waves in the long-wave limit is possible
only when N, vanishes.

The term onthe right-hand side of Eq. (1) describes the
damping of a trapped wave mode by the excitation and
radiation of internal waves in the ambient medium. It
is evident that this mechanism effectively damps the
low wavenumber portion of the spectrum u,. The cut-
off wavenumber, denoted by «, is directly related to
the amplitude condition given in Eq. (2), and vanishes
as N, tends to zero. In this limit, Eq. (1) reduces to
an equation obtained by Benja.min2 and studied inten-
sively in recent years,s'e. For the physical situation
described here, the equation is obtained with a of or-
der unity, and €=1. The effect of @ can be removed
by a scaling transformation, but we choose to retain
the two parameters a and € in Eq. (1).

The homogeneous equation (¢ =0) possesses an infinite
number of conserved densities.” When €+#0, there is
only one conserved density, namely,

(u(x,t))=const, 3)

where (...) denotes the integral over one wavelength
if the motion is periodic, or over the infinite domain
if # describes a localized wavepacket. This condition
requires the amplitude and length scale to vary in in-
verse proportion so that the wave “volume” is con-
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served. The next integral moment
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provides a useful relation describing the energy decay
of any solution to Eq. (1), where u,(¢) is the spatial
Fourier transform of u(x,?). Maslowe and Redekopp
used Eq. (4) to estimate the lifetime of solitary wave
solutions

2V
u(x, t) = ﬁm (5)

of the homogeneous equation. They treat the right-hand
side of Eq. (1) as a small perturbation, whichis expected
to give reasonable results only when € «<1; that is, when
the time scale for the decay is long compared with the
time required for the wave to propagate one wavelength.

In what follows we present numerical solutions of Eq.
(1) with the initial condition (5), in order to establish
the actual damping law. The results are compared to
the adiabatic theory in which %, is evaluated from Eq.
(5), treating V as a time-dependent parameter. Sub-
stituting », in Eq. (4) yields the relation
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A sample numerical computation is presented in Fig.
1 for the parameter choices ®=2.0 and €=1.0. The
initial condition at { =0 in physical and Fourier space
is displayed in Fig. 1(a), while Fig. 1(b) shows the
waveform and the spectrum at {=0.5. At this time the
wave amplitude has already decreased by 40%.

The dominant oscillation in Fig. 1(b) arises because
the low wavenumbers are damped more rapidly than
the higher modes. Hence, the solitary wave shape (5)
can no longer be maintained in the case of strong damp-
ing, and the solitary wave develops gentle oscillations,
even on the face of the wave. The wavelength of the
oscillations is directly related to the cutoff wavenumber
& which determines the local minimum in the spectrum.
As a increases, the oscillation wavelength increases
and even causes the central wave peak to exhibit a wig-
gly crest. On the other hand, as € decreases the local
minimum in the spectrum becomes less pronounced and
the equilibrium solitary wave shape is more nearly
maintained.

The decay of the energy as a function of the cutoff
wavenumber « is presented in Fig. 2, together with the
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FIG. 1. The evolution of a solitary waveform and its spec-
trum: (a) the initial condition at =0 with V{¢=0)=2.0; b)
the evolving wave at ¢ =0.5.

approximate decay obtained from Eq. (6). During the
early stages the peak amplitude decreases linearly with
time, but in the later stages the decay goes at thoIt
is interesting that the adiabatic approximation over-
estimates the damping. The same result is found for
the damped cubic nonlinear Schrodinger equa.tion,8
albeit with a quite different damping term.

The tendency for the adiabatic approximation to over-
estimate the damping can be understood as follows.
The adiabatic theory assumes that the spectral shape
|a straight line in Fig. 1(a)] is unaffected by the damp-
ing, but that the slope continually decreases with time.
The true spectrum, however, is deficient in the low-
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FIG. 2. The energy decay for solitary wave initial conditions:
~— numerical results; ----- approximate results from Eq.

(6).

wavenumber regime; hence, the lower decay rate.

The dependence of the energy decay on the parameter
€ can be accounted for by defining a new time scale €f.
In terms of this variable the actual decay curve ap-
proaches the adiabatic result monotonically, for given
a, as € decreases from unity to zero.
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