Numerical simulations of one-dimensional solitons
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Numerical simulations of (i) the propagation and interactions of one-dimensional Langmuir solitons and

(i) their generation from random fluctuations by an external pump field are presented. The results of
particle simulatjons are compared with computations based on Zakharov’s fluid model. Those computations
establish that Langmuir solitons are reasonably long lived entities in one dimension and are accurately
described by Zakharov’s equations, provided that resonant particle interactions are taken into account by
the inclusion of a damping term. The power spectrum of the electron field fluctuations resulting from the
generation of many solitons by an external pump field is compared with the theory of Kingsep, Rudakov,

and Sudan.

1. INTRODUCTION

The concept of weak turbulence! has played a large
role in the theory of Langmuir (plasma wave) turbulence
excited by beam-plasma interaction. A warm electron
beam propagating in a plasma excites Langmuir waves
of frequency w= w,(1 +3k*X3) by resonant interaction;
here, w, is the plasma frequency and X, is the Debye
length. As the amplitude of this primary spectrum
builds up nonlinear interaction between the' waves be-
comes significant. This interaction is described in
terms of three-wave and higher order processes., Ina
plasma where the electron and ion temperatures are
equal, ion acoustic waves are disallowed so that the spec-
trum only consists of Langmuir waves. Since their
dispersion relation is of the nondecay type, the total
number of Langmuir waves is preserved and higher
order processes can only transfer wave energy to longer
wavelengths. Thus, the conclusion from weak turbu-
lence appears to be that wave energy generated at 2= &,
=w, /v, (v, is the beam velocity) passes to longer wave-
lengths. Since energy absorption at 2— 0 is negligible,
this creates somewhat of a paradox unless other phys-
ical processes like finite physical boundaries, non-
linear conversion to photons which are then radiated,
etc,, are introduced.

On the other hand, several numerical computations of
this problem?-° report significant departures from this
conclusion of weak turbulence theory as the beam en-
ergy density is made a significant fraction of the plasma
energy. The option of heating a cold or warm plasma
by a powerful relativistic electron beam to thermonu-
clear temperatures presents a strong incentive to study
this regime. Similar considerations appear in the
analogous problem of plasma heating by a powerful co-
herent laser radiation. :

If the spectrum frequency bandwidth Awis sufficiently
small, then the assumption of weak turbulence (which
requires Aw to be greater than some critical value like
¥, the growth rate of the waves) is no longer tenable.
For resonant interaction Aw/w= ki3 with k~ky~w, /v,
and ¥/w, ~n,/n,, where n, and », are the beam and
plasma densities, respectively. Now, Aw~ 7y implies
nbmvf'“noTe, where T, is the electron temperature.
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Thus, if the beam energy approaches or exceeds the
plasma thermal energy, we cannot expect to have weak
turbulence. Alternatively, if the amplitude of the wave
spectrum is very large we may violate the assumption
of weak turbulence as follows: The time-averaged ef-
fect of a large amplitude high frequency electric field
is equivalent to a force — V| E{%/87 which creates an
ion density perturbation | 6n/n,l = = { E|%/811,7,. This
inhomogeneity in the plasma density creates a plasma
frequency bandwidth dw/w=30n/ny~ | E|®/8m1,T,. When
this self-induced bandwidth approaches or exceeds the
natural bandwidth #%X%, i.e., when | E|%/8mnT, 2k*)\3,
we are again in conflict with weak turbulence, ®

In situations where either Aw is too small or | E| 2
too large in the manner discussed here, nonlinear pro-
cesses called parametric instabilities with growth rate
proportional to (] E|%/8mnT,)!/? dominate processes de-
fined by weak turbulence whose growth rates are pro-
portional to | E| 28ﬂnTe. For example, in a plasma with
T,> T; the three-wave “decay instability” of Oraevskii
and Sagdeev, " in which a Langmuir wave decays into an
acoustic wave and another Langmuir wave has a growth
rate proportional to (wow,)'/? (1 E12871T,)!/2, where w,
and w, are the frequencies of the Langmuir and acous-
tic waves, respectively. This process is disallowed
when T, S T;; but, in this case, if the pump wave has a
frequency w= w,, Nishikawa® has shown the existence of
the so-called “oscillating two-stream” instability, in
which ion fluctuations induced by the pump wave scatter
the energy of electron oscillations to short wavelengths.
This is really a four-wave process in which the scat-
tered wavelength is approximately equal to the ion fluc-
tuation wavelength 27/%' and the scattered frequency w’
is approximately equal to w, the pump frequency. The
phase velocity of the scattered wave is much shorter
than that of the pump wave since %’ > % and in conse-
quence, its Landau damping is much larger. Thus,
this parametric instability transfers energy from long
wavelengths to shorter wavelength where it gets
absorbed, a conclusion opposite to that obtained from
weak turbulence theory.

The one-dimensional numerical simulations of Kainer
etal.? were the first to see this effect of energy trans-
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fer to shorter wavelengths, and this conclusion was
reinforced more spectacularly by the laser-pump sim-
ulations of deGroot and Katz* and the relativistic elec-
tron beam-plasma interaction simulations of Thode and
Sudan,® In the latter two particle simulations the one-
dimensional power spectrum developed at long times as
k2, between 102 <k), <1,0. An explanation for this
particular dependence was put forward by Kingsep
etal.® in terms of the following picture. The beam
driven primary spectrum pumps energy via the para-
metric instability to shorter wavelengths. However,
this spectrum in k space can also be viewed in physical
space as a random collection of solitons with a certain
distribution. A soliton is a localized, stationary, large
amplitude plasma wave in which the dispersive effect
on the wave packet kzX‘,’, is balanced by the self-trapping
effect of the induced ion density depletion dn/n,~ — | Ei2/
8mnyT,. The equilibrium distribution of these solitons
obtained from the principle of detailed balance furnishes
the ¥~2 spectrum.

The objectives of the computations of the present pa-
per are: (i) to establish that the soliton is a reasonably
stable entity in one dimension for the purpose of the
theory of Kingsep efal, 9; (ii) to make a careful com-
parison of the excitation, propagation, and interaction
of solitons on a particle simulation model and a fluid
model based on Zakharov’'s equations, '® and (iii) to com-
pare spectra generated in the fluid model with the
above-mentioned theory, and to reconcile differences be-
tween the two,

The plan of this paper is as follows. Section O gives
a brief mathematical introduction leading to the numer-
ical simulation methods discussed in Sec. III. Section
IV discusses the numerical calculations of soliton prop-
agation and collisions between solitons. We find that
the results from the fluid code are in reasonable agree-
ment with those from the particle simulation code pro-
vided the effect of electron Landau damping is suitably
included in the fluid code.

In Sec. V it is shown that solitons can be generated
from thermal noise fluctuations by an external pump
electric field at w=w,. For short systems of length L
comparable to the wavelength X of the most unstable
mode of the parametric instability, the resuits obtained
from particle and fluid simulations are compared. In
both simulations the total electrostatic energy saturates
at the same level and a soliton is observed. For long
systems, L> A, fluid simulations only were carried
out. In this case many solitons are generated and the
power spectrum of the resulting “soliton turbulence” is
compared with the predictions of Kingsep efal.®

We note that Langmuir solitons, while stable in one
dimension, are unstable in two or three dimensions to
transverse perturbations.!*'* A two-dimensional fluid
model with Landau damping included has been used in
detailed studies of this instability, !* to be presented in
a future paper.

11. DYNAMICAL EQUATIONS

To establish the notation and the equations used later
in numerical computations, in this section we sum-
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marize the basic formulation and assumptions that lead
to Zakharov’s model for Langmuir soliton behavior. 1°
Let On; denote the ion density perturbation and 37, de-
note the high-frequency component of the electron den-
sity perturbation. Setting the low frequency component
of the electron density perturbation, 0xn,, equal to the
ion density fluctuation yields

n; =g + Omy,
N, =g + On, + 071, = n; + O,

where »;, #,, and n, denote, respectively, the ion den-
sity, the electron density, and the average ion (or elec-
tron) density. Neglecting the nonlinear electronic
terms V - (87,0¥,) and 0V, - V6¥,, where ¥, is the high
frequency electron velocity, the equation of conserva-
tion of electrons, the electron momentum equation, and
Poisson’s equation give
2 - -

V-[BT:;;+w§<1+%)(8+80—3>\%VV-3)]:0. n
Here, a spatially homogeneous external field &;
= Eycoswyf of amplitude E; and frequency w, has been
introduced, & denotes the high-frequency internal field,
w, = (47 e®ny/m,)!/? is the electron plasma frequency,
Ap =1,/ w, is the Debye length, v, is the electron thermal
velocity, and —e and m, are, respectively, the elec-
tron charge and mass. Now, writing & =Re[E(x, #)
X exp(— iwet)], where the amplitude E(x, #) is slowly vary-
ing at the ion time scale, and neglecting the nonlinear
dispersion term 6n,V(V -E), yields

.8E 3 N
v- [z e we)\%,V(V'E)]

1 on, 1 On; .
=5 WV (-;0‘- E) + 5wk V (—;:—) exp(~ iQy!), (2)

where 4= wy — w,.
From the linearized equations for the ion fluid we ob-
tain

8%6m 1
7=+ 5= V- (eng8+ F, ~ 3T,V om,) =0, (3)
1

where &1is the low frequency component of the electric
field, F; = - (m,/m;) V(| 8+ &3 /87 is the ponderomotive
force on the ions from the high frequency components
of the electric field,** 7, is the ion temperature, and
m; is the ion mass. The low frequency component of
the electric field is obtained by the force balance on the
electron fluid,

—enyd +F, ~ T,Vbn, =0, (4)

where F, = - ¥( 5+501 3y/87 is the averaged pondermo-
tive force on the electrons and 7, is the electron tem-
perature. Substituting & from Eq. (4) into Eq. (3), set-
ting x, = On; and neglecting F; «< F, gives

8% 6n; / 0t% — c2v20n,
=(16mm;) VY| E|2+E, - [E exp(it) +c.c. ], (5)

where ¢, =[(¥T, + T,)/m;J*/? is the ion acoustic speed
and y=3.

Zahharov’s model for Langmuir turbulence is defined
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TABLE I. Units used in dimensionless formu-
lation of Zakharov’s model.

time Zomy/m w3t
space Somy/m )V i,
velocity cs=my/mp'/ v,

electric field [(647/ 3)nym cE)!/2

ion density -;-(m,,/m‘)no

energy density $ngm el

by Egs. (2) and (5), which now include an external field
oscillating near the plasma frequency. These equations
may be written in dimensionless form as

v- {i % +VV. E}: V- [NE + NEgexp(- i), (6)

2
%2\7_ - ViN=VH{|E|?+E," [E exp(iQy?) +c.cl}, (N

where N denotes the ion density perturbation, and the
units are defined in Table I,

One-dimensional Langmuir solitons are traveling
solutions of Eqs. (8) and (7) obtained by setting E;=0. '°
Assuming an ion density perturbation of the form N
= N(x - v,t), propagating at a group velocity v,, yields
| E1?= N(v} - 1) from which

E(x, t) =[2k3(1 — 03]V 2 {cosh[ky(x - v, )]}
x expl i(k x - Q)] (8)
and
N(x, t) = — 2kE{cosh[ ky(x - v,8)]} 7 9)

where v, =2k, and 2=k — k5. A soliton is completely
defined by the parameters k; and k,, with k; <3,

The formation of a soliton depends on a competition
between dispersion and nonlinear terms in Eq. (6).
These terms must therefore be approximately equal,
requiring that the electrostatic energy W, satisfy the
condition (&), )~ W,/n, T, for values of % corresponding
to the dominant waves of the spectrum. The nonlinear
electronic terms which have been neglected in the der-
ivation of Eq. (2) become significant for times larger
than 7, = [w,(BXp)? W,/n, T,]"!. Since soliton propagation
occurs over times of order (m;/m,)w;!, soliton behavior
may be expected in the regime defined by the conditions

We/noTB'“(k)\D)z<(me/m‘.)”2. (10)

The effects of wave-particle interactions on the evo-
lution of solitons can be included in Zakharov’s model
by introducing damping terms corresponding to Landau
damping of the high and low frequency waves on the
electron. !*'® These terms are conveniently introduced
into the spectral representation of Egs. (6) and (7)
which form the basis for the numerical solution, Re-
ducing Eqs. (6) and (7) to one dimension, taking a Fouri-
er transform with respect to the space variable, and
introducing damping terms corresponding to each mode
yields
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HUdE,/dt) = (B = i7,) E, = (NE), + N, Eyexp(— i), (11)
d2®N,/dt? + 2T(dN,/dt) + BN, = - B*(| E|?),
- E B2 [ Epexp(iQyt) + EX exp(- it)].  (12)

Here, E,, N,, (NE),, and (| E|?), denote the Fourier
transforms of the corresponding functions of the space
variable. The constants ¥, and I', account, respectively,
for Landau damping of the high and low frequency waves.
In dimensionless units these constants are given by

3 my, (T\/? . .
Ya=5" _7"’1‘: <§> (BXp) axexp[—%(k)\p) 2-1] (13)
_3 my (T\VE 1 (EL)Z
r,= 2 m, (8) oy \3,/ (14)

where Q, is the frequency of the ion motion for mode %.

Introducing the integral

I =J‘w [| E+ Eyexp(- it)|? - E 3| dx

=211J E,E} dk+2nEgRe[ E,_o exp(iQ2)], (15)

Egs. (11) and (12) give

4, znf YELE Y dk + 219 EIm[ E, ., exp(iQ,1)].

dt

(16)
If E;=0 and ¥,=0, the integral ], reduces to Zakharov’s
first invariant, In the case of an external driving field
oscillating at the plasma frequency (£,=0), the integral
I, decays (7, >0) or remains constant (7,=0). Since
the internal field energy cannot grow indefinitely while
I, remains bounded, it follows that the oscillating two-
stream instability resulting from such a driving field
(€, =0) necessarily saturates when the internal field E
becomes approximately equal to the external field E,
this saturation occurring even in the absence of damp-
ing.!" The situation discussed here corresponds to a
plasma dielectric in a capacitor driven by a current
generator. The alternative condition, where the plasma
is driven by a voltage generator, would demand that the
amplitude of the net electric field E,_; + E, remain con-
stant.

Since the derivation of Eq. (7) is based on linearized
equations for the ion fluid and assumes charge neutrality,
this equation does not include any nonlinear or dis-
persion terms. In the regime defined by (10), these
terms are not significant, except for solitons with group
velocities near the ion acoustic speed, When 1 -2
=| E®| /N=m,/m;, then we have to include additional
terms arising from the dispersion and nonlinearity of
the ion motion. In this limit we obtain the Korteweg~—
deVries equation, ' modified by the ponderomotive force
term - 23! E|%/9x, and transferring it to the laboratory
frame we recover the equation derived by Makhankov, 18

N N 4 m (84N LNty & e
YR 8x> 3 m, \dx' "3 ax%)" ax? | El™

am
Solitons have been observed to be unstable in two di-
mensions. We note that although they are stable in one
dimension, solitons cannot propagate adiabatically in a
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one~dimensional medium in which the Debye length or
the density are a function of position. This follows
from the fact that the relations [ | E|®dx=const, [Ndx
=const, and | E|? = N(v2 - 1) cannot be satisfied simul-
taneously when v, changes as a result of inhomogeneity.
Indeed, a solition propagating in an inhomogeneous
medium will limit ion fluctuations to keep these quan-
tities consistent with each other. '°

I11. SIMULATION METHODS

The results of computer simulations of soliton be-
havior, presented in Secs. IV and V, were obtained by
particle simulations and by fluid simulations based on
Zakharov’s equations, extended to include damping
terms and an external driving field. In both methods
the computations were one-dimensional with spatial
variation in the x direction, and either reflecting or
periodic boundary conditions were used.

The particle simulations include two species rep-
resenting electrons and ions with a mass ratio »7;/m,
=100. The algorithm is based on the method of period-
ic smoothing in phase space.?® In this method the x-v
phase plane for each species, is covered with a rec-
tangular grid and weighted simulation particles initially
located at each grid point are advanced according to
their self and externally applied fields for 5 to 20 time
steps. The distribution functions are then recon-
structed by distributing the weight of each simulation
particle locally among neighboring grid points. New
weighted particles representing the updated distribution
functions are then set up and advanced, after which the
procedure is repeated. The repeated reconstructions
are effective to smooth local fluctuations in the distribu-
tion functions and thus eliminate the noise due to individ-
ual particle interactions. The absence of noise in the
present method has been verified in very low amplitude
simulations, ?! and is an important consideration in the
present simulations, because of the relatively low am-
plitude of the perturbations involved (W,/n,T, ~1%).

The fluid simulations are numerical solutions of the
Fourier transformed equations (11) and (12). A system
of length L is considered with discrete wavenumbers
k=27mm/L, where w is an integer. The linear terms in
the left members of these equations are integrated ex-
actly and increments due to the right members are ap-
plied using an implicit method with iterations. Modes
corresponding to — #ig,, = M = my,, are retained in the
computations, The convolution sums required in the
nonlinear terms are computed by transforming back to
x space after the addition of zero modes to eliminate
the periodicity in % space. This method is similar but
not identical to the split-time-step Fourier method, 22
All computations are carried out in k space and rep-
resentation in x space is used only in evaluating convolu-
tions or for diagnostic purposes.

1V. PROPAGATION AND INTERACTIONS OF SOLITONS

In this section we present particle simulations of the
propagation and interactions of solitons of sufficiently
low amplitude to allow comparison with theory and with
computations based on the fluid equations, including

274 Phys. Fluids, Vol. 20, No. 2, February 1977

Landau damping, discussed in Sec II.

In the particle simulations, a soliton is initialized by
setting up Maxwellian distribution functions of the form

3, v, 120) = (ny/Vom?) expl ~(n - V,}2/20%),

for the ions (s =7) and for the electrons (s=¢), The

ion and electron density perturbations corresponding to
a soliton are given by on; = ong + F(m,/m;) ny N(x, £=0)
and On, = dn; — (4/3V3)(m,/m;) ng 0E/5x!,.,, where N(x,t
=0) and E(x, /=0) are given by Eqs. (8) and (9) and the
constant 8x, is chosen to satisfy the condition | on; dx
=0. In addition, we need initialization of the drift and
thermal velocities. The low-frequency ion drift velocity
V; must satisfy the equation of continuity, from which

V; =1,0n;/n;. The electron drift velocity is obtained

- from the conditon 9/ 8¢ = — 4ne(n; V; - n,V,), from which

v, = (aé/ at)/4men, + (n;/n,) V;, where & =2Re| E exp(- iw,t}].
In addition to its low-frequency component V;, the ion
d_rift velocity also includes a high-frequency component
Vi=(m,/m;)V,. For the mass ratio #;/m, =100 used

in the present simulations, | V,/V,|~(m,/m;)"/?=0.1,
and V; must therefore be included as a correction in the
initialization of the ion drift velocity. Finally, the
thermal velocities are specified by the one-~dimensional
adiabatic condition, v, =(n,/m)v, o, v; ={n;/ny)v;0, where
U0 and v;, are ambient values.

A uniform grid with mesh size Ax=2X, in space, and
extending to +4. 6 vy with 61 grid points in velocity was
used. The internal electric field was computed at time
intervals At=0.2 w;! and the distribution functions were
reconstructed every 10 time steps.

In the fluid computations, a soliton is initialized by
simply setting up values of E(x, f=0), N(x,/=0), and
M(x, t=0) =98 N/8t| ., obtained from Egs. (8) and (9).

A. Soliton propagation

The evolution of the ion density fluctuation correspond-
ing to the particle and fluid models, for a soliton with
parameters k=1 and v,=0.6, are compared in Fig. 1.
Parameters are given in the dimensionless units of
Table I, except when stated otherwise. The length of
the system, L =8.55 was chosen to allow propagation
of the soliton over a sufficient time, /,,,=2.13, without
significant interaction with the reflecting boundaries.
These parameters correspond to RoA,=1/15, 2,=0.6¢,,
L =128 X, and w,fna,=320.

The ion density perturbation from the particle sim-
ulation, shown by the solid line, propagates to the right
and follows, approximately, the theoretical soliton be-
havior given by Eq. (9). However, the depth of the ion
depression decreases as the soliton propagates and a
tail appears in its trailing end. The position of the cen~
ter of mass of the soliton as a function of time is shown
in Fig., 2(a). To eliminate the effect of the tail, the
center of mass is computed by considering only the cen~
tral portion of the soliton, defined by x,, — 2Ax <x<x,
+2Ax,, where %, corresponds to the minimum of the
ion density and Ax; and Ax, are the distances from the
minimum where 87;=0,5 (0n;),;,.- We observe that the
velocity of the center of mass follows closely the theo-
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FIG. 1. The evolution of the ion density perturbation N(x,?),
calculated from particle simulation (solid line) and fluid code
(broken line) as a function of x for different times. Initial
parameters are %,=1.0, v,=0.86,

retical group velocity given by the solid line in Fig. 2(a).

The ion density perturbation from the fluid equations,
shown as a broken line in Fig. 1, agrees qualitatively
with the particle simulation results. However, we ob-
serve that, in this simulation, no significant tail ap-
pears on the trailing end of the soliton. This computa-
tion includes Landau damping of the high frequency wave
by the electrons which is responsible for the decay of
the ion perturbation. An additional computation showed
that including Landau damping of the low-frequency
wave by the electron does not yield significantly differ-
ent results, The position of the center of mass of the
soliton, computed by the same method as in the particle
simulation, is shown in Fig. 2(a) and close agreement
is observed between the two models.

The electrostatic energy of a soliton is given in di-
mensionless units by W, =3[|Re([Eexp(-iw,#)]i2dx.
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Substituting E(x, ¢) from Eq. (8) into this integral yields

ky/k 3 m,
= 4k(1 - 021+ —a Ko [2(——-""7*’2 f]-
W, =4ky( v,){l +sinh(ﬂk1/k0) cos 2 my 5

Thus, W, oscillates about the average value (W,)

=4k4(1 ~ vi) at approximately twice the plasma frequency.
The maxima, minima, and average of the total electro-
static energy of the system, W,, from the particle sim-
ulation are given in Fig, 2(b). Note that the difference
between W, and W, represents electrostatic energy not
trapped in the soliton. The average electrostatic energy
remains constant, but a significant decay of the oscil-
lation amplitude is evident. In the fluid simulation, the
electrostatic energy is not followed on the electronic
time scale but the average electrostatic energy, given
by (W,) =4[ EE* dx, decays due to Landau damping of

the high frequency wave as shown by crosses in Fig,
2(b). The absence of any decay in the average electro-
static energy in the particle model shows that resonant
electrons do not actually cause Landau damping but only
an energy transfer between modes. However, the agree-
ment in the decay of the soliton amplitude between par-
ticle and fluid simulations suggests that this energy
transfer has approximately the same effect as Landau
damping in the fluid code. This effect is to disrupt the
balance between nonlinearity and dispersion which is
required for theoretical soliton behavior. This inter-
pretation is confirmed by simulation results for larger
amplitude solitons and for the soliton collisions which
follow.

The ion density fluctuations corresponding to the par-

(a}

S5
»
& PARTICLE SIMULATION
X 4l x FLUID COMPUTATION
-
v
»
4
3 — 1 1 1 L
|
\,\ (b)

05 x—x-xx—x—x=x—x—x—x

MIN.
1 L A 1
o] | 2 3 4

FIG. 2. (a) Position x of the center of mass of the solition as
a function of time calculated from the particle simulation
(circles) and from the fluid code (crosses). The predicted
motion of the center of mass forthe undamped soliton is given
by the solid line. Initial parameters are k;=10, % =0.6. (b)
The total electrostatic energy W, as a function of time. For
the particle simulation, W, oscillates between a maximum and
a minimum at about 2w,. The maximum, minimum, and aver-
age values are shown by respectively, upper, lower and middle
lines. The crosses show the average electrostatic energy (W,)
from the fluid code.
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N(x) [

FIG. 3. The evolution of the ion density perturbation N(x,?),
calculated from particle simulation (solid line) and fluid code
(broken line) as a function of x for different times. "Initial
parameters are k;=2.0, v,=0.4. The soliton decreases in
amplitude, and ion acoustic waves appear at t =1, 33.

5
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FIG. 4. (a) Position of the center of mass of the soliton as a
function of time calculated from the particle simulation
(circles) and from the fluid code (crosses). The predicted
motion of the center of mass for the undamped soliton is given
by the solid line. Initial parameters are ky=2.0, v,=0.4.

(b) The total electrostatic energy W; as a function of time.

For the particle simulation, W oscillates between a maximum
and a minimum at about 2 w,. The maximum, minimum, and
average values are shown by, respectively, upper, lower, and
middle lines. The crosses show the average electrostatic
energy (W,) from the fluid code.
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FIG. 5. The evolution of the ion density perturbation N(x,#),
calculated from particle simulation (solid line) and fluid code
(broken line) as a function of x for different times, Initial
parameters are k=3.0, v,=0.4.

ticle and fluid models for a soliton of larger amplitude
with ky=2 and v,=0.4, are compared in Fig. 3. A
larger decay of the soliton occurs now than in the smali-
er amplitude case of Fig. 1, but the soliton amplitudes
in the particle and fluid models are in good agreement,
The detailed form of the soliton is distorted in both
models and ion perturbations, which are not accom-
panied by any trapped electrostatic energy, appear in
its trailing end. Since kyAp, =0.13 in the present case,
strong wave-particle interactions are expected to occur
for modes with wavenumbers k2 3k,. Indeed, we ob-
serve that the soliton decays most rapidly at the be-
ginning of the simulation (£<1. 33), corresponding to a
truncation or rearrangement of its initial spectrum,
while for later times (#>1. 33) the ion density appears
to settle to an approximate steady-state soliton of
smaller amplitude (k,~1) superimposed over ion acous-
tic waves.

The position of the center of mass, plotted as a func-
tion of time in Fig. 4(a), shows that the soliton prop-
agates for both models with a group velocity slightly
larger than the theoretical value. The maxima, minima,
and average of the electrostatic energy W, from the par-
ticle simulation, given in solid lines in Fig. 4(b), show
that the average energy remains constant, The average
electrostatic energy from the fluid code, given by the
broken line, decays due to Landau damping as in the
preceding simulation,

An additional larger amplitude case, with =3, v,
=0.4 is given in Fig. 5. Here, there is a large distor-
tion of the soliton, with significantly different behavior
for the particle and fluid model, with the appearance of
short wavelength oscillations which have no counterpart
in the fluid model results.
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It should be observed that nonlinear and dispersive
effects which have been neglected in the equations may
account for some differences between the preceding
particle and fluid simulation results.'® Although Eq.
(17) is exact only in the limit v,~ 1, it may be used to
estimate the times 7, and 7,; after which ion dispersion
and nonlinearities become significant. Equating the
time derivative term to the dispersive term and to the
nonlinear term in Eq. (17), for values of N correspond-
ing to a Langmuir soliton, yields 7,~ T,; = (m;/m,)*'?/
ki, For the simulation results of Fig. 1, k,=1, these
times (7,2~ 7,; ~10) are clearly longer than the simula-
tion time (f,.,=2.17). In the case of Fig. 3, the soliton
decays rapidly to 2;~1 due to resonant particle effects.
After this stage, 7,~ 7, are again longer than the sim-
ulation time and thus nonlinear and dispersive effects
are unimportant. However, in the large amplitude case
of Fig. 5, where 1,~7,,~1, ion nonlinearities and dis-
persion are expected to have a significant effect which
is included in the particle simulations but absent from
the fluid model. This may explain the discrepancies
evident in Fig. 5.

Finally, we observe that the electron trapping times
7, = 2n(eEyk/m,) " *(approximately 1 to 3 dimensionless
units) in the preceding simulations, are typically shorter
than the simulation times. However, electron trapping
effects are not expected to occur because of the very
short transit times (approximately 102 dimensionless
units) of resonant particles across the solitons.

B. Collision between solitons

The interaction of two solitons has been studied by
Abdulloev etal.® and by Degtyarev efal.? by numerical
solutions of Zakharov’s one-dimensional fluid equations
excluding Landau damping,

. ®E 9%E

i +W—NE’ (18)
*°N  3*N _ #° 2

8t 8x°  ox? | B[, (19)

When the second order time derivative term in Eq. (19),
which is due to ion inertia, is neglected, this equation
yields N=-|E|? and the fluid model reduces to a single
equation'®
2
ii—f+—aa—xE2—+]E[2E=o. (20)

This equation, which has been treated extensively in
the literature, satisfies an infinite number of invariants
and is exactly integrable.?® It admits soliton solutions
of the form given by Eq. (8), with u,=0 in the numera-
tor. Such solitons are stable and two colliding solitons
always pass through each other, changing their velocity
only during the interaction.

The system of equations (18) and (19) is not exactly
integrable and is found to have properties very different
from those of Eq. (20) when interactions between soli-
tons are considered. In Ref. 23 the condition 4 > ,(1
- v?) is stated for the merging of two colliding solitons
to form a single large-amplitude soliton. Numerical
studies by Pereira'® do not lead to such a simple con-
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FIG. 6. The evolution of the ion density perturbation N(x, t)

for a collision between two identical solitons with opposite ve-
locities as a function of x at different times in the undamped
case. Initial parameters are k;=2.0, v,=+0.4.

dition and show that the initial phase difference between
the solitons also plays an important role. In the case
of coalescence, the collision between solitons is ac-
companied by emission of ion acoustic waves.

Here we consider the collision of two solitons of equal
amplitudes with k3=2, traveling with opposite group
velocities v,=+0.4. The results of a particle simula-
tion will be compared with fluid computations including
Landau damping. However, to establish a basis of com-
parison, a computation based on Eqs. (18) and (19), i.e.,
excluding Landau damping is considered first. The
results of this preliminary computation, given in Fig. 6,
show that as they collide at {=4, the solitons merge in-
to a single large-amplitude soliton which is accompanied
by the emission of an ion acoustic wave.

The results of the particle simulations and of the fluid
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FIG. 7. The evolution of the ion density perturbation N(x, #)
for a collision between two identical solitons with opposite
velocities as a function of x at different times, calculated from
particle simulation (solid line) and fluid code with damping
(broken line). Initial parameters are k=2.0, v,=+0.4,

computations including Landau damping, shown in Fig.
7, are very different from the preceding results. The
approaching solitons propagate, as found earlier, at a
group velocity somewhat larger than v, and therefore
collide at an earlier time, #=2.67. As the collision
occurs the resulting soliton now has a much smaller
amplitude than in the solution without damping (note
the scale difference between Figs, 6 and 7), and decays
rapidly to form a single low-amplitude soliton at £=4,
There is a remarkably good agreement in Fig, 7 be-
tween the particle model and the fluid model including
damping, when compared with the results of the fluid
model excluding damping shown in Fig. 6.

In the absence of Landau damping or resonant par-
ticles, the soliton resulting from the collision in Fig,
6(d) has a parameter kj= 4k, =8, corresponding to kj),
=~ 0,5, and its wave spectrum therefore extends into the
region kA, ~1. In the presence of resonant particles
this spectrum is therefore truncated in % space result-
ing in the broader and weaker soliton in x space found
in the simulation results of Fig. 7 at £=4.
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V. SOLITON GENERATION

In this section we consider the generation of solitons
from random initial fluctuations by an external pump
field through the mechanism of the parametric insta-
bility. For a driving field frequency equal to the plasma
frequency, §,=w;~-w, =0, in Sec. II we have seen that
the integral I, = [(| E + Ey| % - E2) dx satisfies the inequal-
ity dI,/dt= 0 for ¥,=0. Thus, for £,=0, the insta-
bility must saturate, even in absence of damping, when
the energy of the internal field is approximately equal
to the external field energy. After saturation, the elec-
trostatic energy condenses into solitons each having an
energy ~ N\, E2/87 spaced approximately A, apart, where
A,, is the wavelength of the most unstable mode. In par-
ticle simulations by Valeo and Kruer, ®® transient so-
liton type structures were generated by a powerful ex-
ternal field with normalized amplitude 7= E,/ (47, T,)"/?
=0. 8 and a frequency wy;=0.9w,. These structures
were found to have an amplitude corresponding to kyA,
~0. 15 which results in strong damping due to wave-
particle interaction, The smaller values of the external
field considered here, with 7 ranging from 0, 125 to 0. 25
allow us to generate stable solitons, having recogniz-
able features.

A comparison between particle and fluid simulations
of a single soliton is considered first. The generation
of multiple solitons in a long system is then considered
by fluid simulation alone.

A. Comparison of particle and fluid simulation of a single
soliton generation

A particle simulation of the parametric instability
was done with a system of length L =307),, a mass
ratio »;/m, =100, and a driving field with a normal-
ized amplitude 7=0. 16, oscillating at the plasma fre-
quency. All modes of the electron and ion density (up
to kpay=27x41/L) were initially given small perturba-
tions of equal amplitudes and random phases,

The same mass ratio, pump field, and system length
were used in a fluid simulation. In this case, the com-
putation is initialized by giving to electric field modes
(up to Rpa =27Xx10/L) equal initial amplitudes and ran-
dom phases while the ion density is initially unperturbed.

The first mode 2=2n/L is the most unstable and
grows exponentially, in both simulations, until the en-
ergy of the internal field reaches a value approximately
equal to the pump field energy. As the field energy
approaches saturation it condenses into a single soliton.

The ion density profile when the soliton first appears
is shown in Fig. 8(a). The solid line corresponds to
the particle simulation at /=14 while the broken line
corresponds to the fluid computation, but at £=12. 33,
The difference in time is caused by a slight difference
in the early evolution of the instability, The amplitude
of the soliton observed in the particle simulation
reaches a maximum at =15, while the maximum in
the fluid computation occurs at £=13, 33 and is signif-
icantly lower, see Fig. 8(b). After the maximum is
reached, both | EI? and N decrease in the two computa-
tions and perturbations which leave the soliton region
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FIG. 8. Ion density profile N(x,#) of a soliton generated by
an external pump with n=0,16. Solid lines correspond to the
particle simulation (at times denoted by £,) and broken lines
correspond to the fluid computation (at times denoted by ¢;).

are generated. In this later stage the maximum ampli-
tudes of the solitons, in both computations, oscillate
about somewhat different mean values.

We conclude that the two compuations agree quantita-
tively with one another for £$14, At later times the
qualitative features of the two computations are still
in good agreement. Both computations exhibit satura-
tion of the instability around /=15 with formation of a
single large soliton, and subsequent oscillations in the
soliton amplitude, together with the appearance of per-
turbations in | E{% and M.

The late time spectrum of the electrostatic field in
the particle simulation at £=17. 8 is given by the cir-
cles in Fig. 9, while the solid line shows the electro-
static field spectrum of a single Rudakov soliton, Eq.
(8), with 25=2.

For k)2, <0.2 (region I), the spectrum agrees with the
2% dependence found in previous particle simulations,*¢
However, for 0.2<kx,<0.7 (region II) the spectrum
falls off more rapidly, approximately as %78, while for
even larger k, k\,>0,7 (region I) the spectrum dis-
plays a tail approximately fitted by a k™ power law.

The single soliton spectrum agrees with the particle
simulation spectrum out to kA, =0. 7 (regions I and II)
but falls off more rapidly for larger values of k.

The low amplitude tail for kA, >0, 7 (region III) ap-
pears to be the result of errors due to the discrete rep-
resentation of the electric field and of the distribution
function, With mode energies which are six orders of
magnitude lower than the large-amplitude modes near
k=0, this region of the spectrum is not expected to have
a significant effect on the formation or the evolution of
the soliton,
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B. Multiple soliton generation

One-dimensional Langmuir turbulence has been de-
scribed® as a random collection of solitons. To ex-
amine this concept, fluid simulations of the parametric
instability were made with a long system L =2000m2,,

a mass ratio m;/m, =2000, and driving fields with
normalized amplitudes 1 ranging from 0,125 to 0. 25
oscillating at the plasma frequency (2,=0). For the
weaker pump field, 7=0.125, the maximum growth

rate of the instability occurs for kX, =0.26, correspond-
ing to a wavelength A, = L/26, and therefore after satura-
tion we expect to observe approximately 26 solitons,

The computation is initialized by giving to all electric
field modes equal amplitudes | E,| =10°% E, with random
phases, where k=2mm/L and | m| < mig,, =341, Initially,
the instability is observed to develop in agreement with
linear theory and a total electrostatic energy exponentiat-
ing as shown in Fig. 10(a). The spatially homogeneous
component of the internal field, E,., Fig. 10(b), re-
mains very small out to £=2, then increases rapidly and
becomes approximately equal to the external field am-
plitude at £=4. At this time, the spatially homogeneous
component of the internal field effectively cancels the
external field and the instability saturates. After satura-
tion (2> 4), the electrostatic energy density condenses
into solitons which remain stable for the duration of the
computation (f,,,=10), Typical plots of the electro-
static energy density and of the ion density fluctuation
are shown in Fig, 11 which corresponds to =6, Ap-
proximately 22 solitons may be counted on these plots
with values of kyA, varying between 0. 02 and 0, 05.
These solitons have an approximately uniform distribu-
tion in space and are stationary although the amplitudes
of the individual solitons fluctuate.

The spectrum of the electric field is given in Fig.
12(a) at a particular instant, £=6, and Fig. 12(b) shows
the same spectrum averaged between £=6 and £=9 at
intervals of 0. 5. The solid line represents the spec-
trum of a single soliton, as in Fig. 9, with &;=4,
while the straight line represents the % power law.

2
IEx]

o1
T

1072 0! 109 i0'
kAp

FIG. 9. Mode spectrum | E,|? versus kAp. Circles correspond
to the particle code driven by an external pump with n=0.16 at
t=18. The solid curve is the spectrum of a soliton with &y =2.
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FIG. 10. (a) Total electrostatic energy as a function of time

from the fluid code driven by an external pump field with
normalized amplitude n=0.125. The intermediate stage shows
exponential growth of the parametric instability. (b) Spatially
homogeneous component of the electric field versus time.

In this computation the solitons are long lived and
clearly separated, with their number N remaining ap-
proximately constant in time, Thus, the spectrum
should indeed be comparable to the spectrum of a single
soliton, following an exponential, rather than a power
law, as a function of k.

For stronger pump fields, larger and narrower so-
litons are generated initially but do not remain stable.
Solitons generated with a pump field 7=0. 25 are shown
in Fig. 13, which corresponds to a small region of
space 80=x=85,4. After saturation, distinct solitons
are observed at =2, see Fig. 13(a). These large-
amplitude solitons break up for £>2, after which new
soliton-like structures having smaller amplitudes, re-
appear as shown in Fig. 13(b). This is typical of later
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FIG. 11. Electrostatic field energy (broken line) and ion
density fluctuation (solid line) at £=6 for the fluid code driven
by an external pump with n=0.125. The scale at left is for the
ion density, at right for the electrostatic energy density. The
length of the system is 97.6 in dimensionless coordinates. Ap-
proximately 22 solitons, and a background of ion waves are
observed.
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FIG. 12. (a) Mode spectrum | E,|? versus kAp for n=0,125 at
t=6. (b) Average mode spectrum versus kAp. The solid line
is the spectrum of a soliton with dimensionless parameter &,
=4.0, suitably normalized.

times in the computation, where individual soliton-like
structures disappear and are continuously regenerated.
Note that in this later stage, the correlation between
ion density depletion and energy density is not as clear
as in the early stage. This behavior is in agreement
with the recently published results of Morales and LeeZ’

The theory of Kingsep efal.® is based on two hypoth-
eses, viz., (i) that the electric field after saturation of
the instability would condense into a system of solitons,
and (ii) that the system would pass through all possible
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Electrostatic field energy (broken line) and ion den-

FIG. 13.
sity fluctuation (solid line) at =2 and £=3 for the fluid code

driven by an external pump with 7=0.25. Only the region 80

< x< 85.4 is shown.
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states, with the number N of solitons ranging between
a minimum N, and a maximum N_,., with equal prob-
ability. The resulting soliton turbulence then yields an
equilibrium spectrum which obeys a power law of the
form %2,

For weak pump fields (70, 25), the fluid computa-
tions of this section show that, after saturation, the
parametric instability indeed displays a system of so-
litons, and therefore verifies the first hypothesis of
Kingsep efal. In this regime, however, the soliton
structure is stable (n=0.125, see Fig. 11), or at least
number N of solitons remains constant in time (=0, 25,
see Fig. 13), and the second hypothesis is not verified.
It follows that, in this case, the electric field spectrum
| E,|? fits a law of the form cosh?k as shown in Fig. 12.
A particle simulation of the parametric instability in
this regime (7=0. 25) by Denavit, 2® yields an electric
field spectrum | E,l 2 which falls as £ in the interval
0.075k2,50.2, then falls as k% for #2,20. 2 [see Fig.
4(a) of Ref. 28]. However, it is clear that this overall
spectrum would fit the law cosh™# better than any
particular power law. This particle simulation is there-
fore in substantial agreement with the computations of
this section, which were based on Zakharov’s model,
including Landau damping terms to account for reso-
nant particle interactions.

For strong pump fields (7= 0. 5), particle simulations
have shown the existence of soliton-like structures, 26
and yield an electric field spectrum of the form | E,|
o k™ with ¢~ 2 out to kA, ~0,5,%%2® Therefore, the
second hypothesis of the soliton turbulence theory ap-
pears to be satisfied only for sufficiently strong pump
fields. In this regime, however, it is not clear that
the introduction of simple damping terms, proportional
to the Landau damping rates 7,, properly represents
resonant particle effects. For this reason, fluid com-
putations for strong pump fields were not carried out
and must await the formulation of a model which would
account for nonlinear particle interactions.

Note added in proof: As this paper was going to press
we were made aware of similar work by Y. S. Sigov
and Y. V. Khodirev, Dokl. Akad. Nauk SSSR 229, No.
4 (1976).
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