Nonlinear development of lower hybrid cones
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The instability of a planar lower hybrid soliton to transverse long wavelength perturbations is investigated
numerically. Initially, a kink-like deformation grows in agreement with linear analysis. In the nonlinear
regime the soliton breaks up into bunches which move apart and spread the energy throughout the plasma.

. INTRODUCTION

Self-modulation effects are thought to be important
for the nonlinear evolution of lower hybrid resonance
cones which have been excited at the wall of the plasma
chamber by a finite extent source such as a phased
waveguide array or a slow wave structure.'™® Since
self-modulation usually leads to self-focusing or fila-
mentation, the primary concern has been to examine
whether these effects would impede the propagation of
rf energy into the interior of the plasma. Depending on
the initial assumptions about the nature of the excitation
spectrum, the nonlinear equation governing the propa-
gation of the lower hybrid waves is the modified Korte-
weg de-Vries equation! or the nonlinear Schrodinger
equation. »® Most derivations of these equations restrict
analysis to the plane containing the ambient magnetic
field and the electric field of the pump wave,!*? and as-
sociate planar stationary solutions of the soliton kind
with filamentation effects. In Ref. 3 the effect of in-
‘cluding the third dimension was studied, and it was
shown that such planar structures were linearly unstable
to long wavelength transverse perturbations and that the
tendency of the cones to filament was opposed by addi-
tional dispersive terms.

In this paper we numerically verify the analytic re-
sults of the linear stability analysis and in addition, ex-
amine the nonlinear evolution of the resonance cone
structures. The pertinent equation is the nonlinear
Schrodinger equation with an additional term [Eq. (26)
of Ref. 3]
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where v is the normalized electrostatic field amplitude
€)%k, /(4nT)' /2. The derivation of this equation, the
validity assumptions, and the physical meaning are de-
tailed in Ref. 3. We will describe its physical content
here. Basically, the equation describes the evolution
of the slowly varying envelope of a monochromatic lower
hybrid wave whose potential is ¢(x) exp(—iwt). The po-
tential is further expressed as ¢(7, £,7) exp(ik,z - ik, x)
where the slowly varying envelope ¢ is a function of the
stretched variables 7, £, and 7. The geometry of the
problem is sketched in Fig. 1 where the orientations of
the coordinates £ and 1 are shown in relation to the basic
resonance cone structure in the x -z plane. 8/98¢ and
8/871 characterize the slow envelope variation in the x
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-z plane and y direction, respectively, in the absence
of the weak effects of nonlinearity and dispersion,
whereas /57 describes the perturbation to the envelope
due to nonlinearity and dispersion. This perturbation
is along the x direction, or the minor radial direction
in a toroidal geometry. Thus, in the present problem
the evolution in the time-like variable 7 corresponds to
evolution along x.

We note that Eq. (1) differs from the usual nonlinear
Schrodinger equation by the presence of the additional
term 8% /31? which arises from inclusion of slow varia-
tions in the third dimension. The negative sign preced-
ing this term sets our equation apart from the Langmuir
wave equation which has a positive sign.*® The sign
difference can be traced to the physical origin of the
two dispersive terms: The 82/5£2 term arises from
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FIG. 1. (a) Lower hybrid resonance cone for a typical case.
Region A contains electromagnetic waves, region B electro-
static lower hybrid waves. The scales of x and z are arbitary,
(b} Expanded and simplified picture of region B, The coordi-
nates ¢ and 7 are perpendicular to each other and the coordi-
nate 7 is normal to the plane of the figure. The location of the
energy density at 7, is indicated by the shaded soliton shape,
Some contour lines are also shown,
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thermal corrections to the cold propagation character-
istics of the lower hybrid wave and is proportional to
k., whereas the 8%/am? term is nonthermal in origin and
represents the spreading out of the wave in a three-
dimensional cone centered about the excitation source.
For the nonlinear Langmuir wave equation both the
terms arise from thermal corrections which are pro-
portional %2, and hence in terms of k, and &, the positive
sign appears. In our case k, is set to zerc and only
slow variations in y are retained. The asymmetry in £
and 7 of Eq. (1), due to the negative sign, has signifi-
cant effects on the nonlinear structure of the solutions
which evolve quite differently from those of the Lang-
muir wave case.

The plan of our paper is as follows: In Sec. II we
present the numerical results for the linear evolution
of a transverse perturbation to a planar soliton solution
of Eq. (1) and compare these to analytical estimates. %°
In Sec. III the perturbation is followed in the nonlinear
regime until extraneous factors arising from limitations
of the numerical scheme begin to develop. A compari-
son is made with previous investigations of the closely
related equation for the Langmuir waves. Our results
are summarized and their implications for lower hybrid
heating schemes are briefly discussed in the final sec-
tion.

. LINEAR INSTABILITY

In this section we present numerical results for the
linear instability of a planar sech-shaped lower hybrid
soliton perturbed in the perpendicular direction. The
computations were performed with a variant of the code
used earlier to study strong Langmuir turbulence,®
which is described by Eq. (1) with a plus sign in front
of the 1 derivative. We used a grid of 32X 32 points
with 334 Fourier modes. The accuracy of the computa-
tions was checked by repeating some of them with dif-
ferent grid sizes and time steps; the results were only
slightly influenced. In addition, the conserved integral
J lv1%dtdn remained constant to a high accuracy.

For a planar soliton of the form v, = sech(t) perturba-
tions even in £ are found to be stable in the computa-
tions; this is in agreement with the analytical calcula-
tions®™ "3 and the computations are not shown here. The
instability of a planar soliton to perturbations odd in &,
of the form

v (£, n, 7) =a(0)(8vy/8¢) cos(xn), (2)

is shown in Figs. 2(a), (b), and (c) for 7=0, 7=4, and
7=6, respectively. The perturbation wavelength is
equal to the periodicity length in the 7 direction of our
system and the initial amplitude is a(0)=0.1. The per-
turbation appears as a kink-like deformation of a planar
soliton, since (2) is the first term in a Taylor series of
the bent sech-shaped soliton v = sech[£ + a cos(kn)],

which has its maximum along the line £ = — a cos(«7).
Because the initial amplitude is chosen to be very small,
these kinks do not yet show up in Fig. 2(a).

At 7=4, Fig. 2(b), the amplitude of the kinks has
increased according to the linear growth rate, but the
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FIG. 2. The electrostatic energy density v 1%(¢,7) for a
soliton normalized to unity with perpendicular wave number
k=7/6., The lines are the contours at 0.75, 0.5 and 0, 25,

height of the soliton has only changed slightly. At~
=6, Fig. 1(c), the soliton starts to deviate from linear
growth. The profile along a line 7 = const is different
from the initial shape, and the height is now clearly
modulated along a line through the soliton maxima.

We note that Fig. 2 corresponds closely to the theo-
retical calculations of Yajima.? He assumes a solution
of the form

v=A(n, 7) sech{a(n, )[£+ &(n, D]},

and finds that a sinusoidal perturbation in 17 on the posi-
tion of the maximum £, grows with the growth rate given
in (3). Sinusoidal perturbations on height and inverse
width A(n, 7) can oscillate in time, in agreement with
numerical computations that are not shown,

We now compare the observed linear growth rate with
earlier analytic results. From Ref. 3 the linear growth
rate is

2t i? - 1,026+ O(K%), (3)

The solid line in Fig. 3 represents the calculatedgrowth
rate (3). The dots are results from the computations,
obtained by measuring the 7 behavior of the maximum
value m(7) of the perturbed minus the unperturbed sol-
iton ,
(= [oE, 1, 1) 12 = [0(E, 1, 7= 0) Plyuss =l

max

(4)
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FIG. 3. The square of the growth rate I'? as a function of the
square of the perpendicular wavenumber «*. The solid line is
Eq. (3). The creoss corresponds to the computation of Fig, 2
with k =7/6, the open circle corresponds to Fig. 6 with « =7/4,
and the dots and squares to other computations.

The logarithm of m(7) is plotted versus 7, and the slope
of the straight portion of this plot yields the growthrate.
For perpendicular wavenumbers « of about 0.25-0. 5,
that is, much smaller than unity but not too small, we
find exponential growth over a sizeable range of 7, and
the determination of the growth rate is reasonably accu-
rate. For values of k outside this range the exponential
growth in 7 is smaller, and the numerical growth rate
is less accurate. From Fig. 3 we see that the growth
rate from the numerical computations, as represented
by the dots, follows the theoretical curve quite well, up
to k2=0.3. The growth rate is proportional to « for
small kK, and within our numerical accuracy the propor-
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FIG. 4. The electrostatic energy density for the computations
of Fig. 2 at later times,
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FIG. 5. Thetime dependence of the electrostatic energy density
maximum, |v|%, from the computation of Figs. 2 and 4 with
«=7/6. The open circle is the maximum in time of |yp| ,2,, for
k =n/4 shown in Fig. 6; the solid square is for k =7/7,

tionality constant is close to the theoretical value of
J4/3. For larger k the growth rate reaches a maxi-
mum, and for still larger « it decreases following once
again the qualitative behavior of the theoretical curve.
The maximum growth is about 0.3 or 0. 75 of the value
suggested by (3), and it occurs near the predicted value
of k® of 0.67. For larger « the growth rate decreases
more slowly than that predicted by (3). However, these
cases do not show the clear kinks visible in Fig. 2(c)
because the nonlinear growth sets in at an early stage.

The linear development of the instability changes to a
nonlinear stage at larger 7 when the amplitude of the
growing odd perturbation has reached about 0. 5 of the
unperturbed planar soliton. Then, the absolute values
of maximum and minimum of the perturbation, which
remain equal in the linear stage, begin to differ appre-
ciably. This nonlinear development is treated in the
next section.

l1l. NONLINEAR DEVELOPMENT

In the nonlinear regime there are no analytic predic-
tions of the final state of the lower hybrid waves as de-
scribed by Eq. (1), and we therefore investigate this
state numerically by following the development of the
kink-like instability well beyond its linear stage.

Figures 4(a), (b), and (c) picture the evolution of the
same soliton as in Fig. 2 for r=7, 7=8, and 7=9, re-
spectively. Now, the perturbation of the soliton is not
a pure modulation of the position of the soliton maxi-
mum, but this maximum and the corresponding width
vary along the soliton ridge and with 7. Depending on
the perturbation wavenumber, the soliton maximum can
obtain values up to twice the initial maximum: the soli-
ton of Fig. 4 reaches 1.4 times the initial maximum at
7="7.3. Subsequently, as in Fig. 4(b), the soliton
breaks up into pieces which cannot keep themselves to-
gether but instead spread out.

In contrast to the Langmuir problem, where the final
state is a self-similarly contracting blob of energy den-
sity leading to a rapid increase of energy density to in-
finity in a finite time (collapse), the energy density in
this case remains bounded at all times. The energy
density maximum versus time of the soliton of Figs. 2
and 4 is plotted in Fig. 5. The maximum oscillates
slightly, and in addition increases slowly toward the
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FIG. 6. The electrostatic energy density ! v | ? for x =7/4 at
7=6. Note the change of scale in the 7 direction,

end of the linear growth at 7=6. This growth acceler-
ates in the nonlinear regime, until at 7="7.3 the largest
value 1.4 is reached. Afterwards, the maximum de-
creases rapidly since at this time the soliton begins to
disperse in £ and 7.

The upturn after 7=9.5 is related to the interference
pattern seen in Fig. 4(c), which does not, however,
represent the end stage of a single decaying soliton.
Namely, our computations take place in a doubly peri-
odic system and therefore as the instability progresses
the soliton moves toward the boundary of its period,
where it gets close to the soliton of the next period. In-
terference between these solitons then results in pic-
tures like Fig. 4(c). In this interference process the
maximum reaches larger values than the minimum
shown in Fig. 5, but we have not observed values larger
than the initial value. This situation of Fig. 4(c) is
spurious in the present computation, which intends to
treat one soliton only, but it could correspond closely
to a heating scheme where the lower hybrid waves are
launched through multiple ports placed around the torus
of a tokamak. Physically adjacent resonance cones
could then simulate such a situation.

The energy density maximum in space and time for
values adjacent to k=7/6, namely, k=7/4 and k=7/7,
is indicated in Fig. 5 by the open circle and the closed
square. The maximum takes place later when the wave-
number is smaller, in agreement with the smaller
growth rate. The value of the maximum is a decreasing
function of the wavenumber. We do not know of a quan-
titative theory that relates the value and occurrence of
this maximum to the perpendicular wavenumber. Such
a theory would undoubtedly be very difficult, and we
have not tried to construct one in view of our limited
objectives. Qualitatively, it seems clear that the max-
imum occurs when the kinks become substantial.

The dashed line in Fig. 5 shows the maximum energy
density versus time for k=17/2, 75 corresponding to the
open square in Fig. 3. After the short linear stage the
soliton maximum does not increase, but instead de-
creases until the end of this computation at 7=6. In-
deed, this soliton never shows the clearly visible kinks
of Figs. 2 and 4, but has slightly oscillating kinks that
decay from the beginning.

In practice, instabilities often develop from random
perturbations and the one with the largest growth rate
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will eventually dominate. Figure 6 shows the soliton
with this fastest growing perturbation with ¥2=0.5 at
7=6. This and other computations exhibit, qualita-
tively, the same behavior as illustrated in Figs. Zand 4.

V. SUMMARY

We have investigated the linear and nonlinear insta-
bility of a planar soliton subjected to a long wavelength
transverse perturbation. Such an instability is related
to the nonlinear evolution of lower hybrid resonance
cones as described by Eq. (1), which takes into account
the nonlinear effects of self-modulation and the pertur-
bative effects of dispersion of the cones in the third
dimension.

In the linear regime our computations agree with the
analytic results quite well. We have further investigated
the nonlinear stage of this instability and found that the
soliton eventually breaks up into smaller pieces which
cannot keep themselves together but spread out., This
is in contrast to the final collapse state in the Langmuir
wave equation,®® which is identical to Eq. (1) except for
the sign of the second dispersive term.

For the lower hybrid cones, therefore, the nonlinear
evolution in the presence of self-modulation can be de-
scribed as follows. Initially, a kink-like instability
with perpendicular wavenumber in the linearly most un-
stable regime around k=0. 5 will grow and distort the
cone. During the process the maximum of the energy
density may reach values up to 1,5 times the initial en-
ergy density. Subsequent nonlinear development causes
the energy to spread throughout the plasma?® rather than
being focused into small regions.
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